輸入電壓115-230VAC
電流0-5A
輸出電壓0-180VDC
適配電機直流電機
適用場合機械傳動
材質不銹鋼和銅
電機響應時間0.1秒
驅動器輸出方式電壓輸出
驅動器電壓24VDC
驅動器電流5A
MYCOM驅動器對步進電機的速度控制技術進行了大量的研究,建立了多種加減速控制數學模型,如指數模型、線性模型等,并在此基礎上設計開發了多種控制電路,改善了步進電機的運動特性,推廣了步進電機的應用范圍指數加減速考慮了步進電機固有的矩頻特性,既能保證步進電機在運動中不失步,又充分發揮了電機的固有特性,縮短了升降速時間,但因電機負載的變化,很難實現而線性加減速僅考慮電機在負載能力范圍的角速度與脈沖成正比這一關系,不因電源電壓、負載環境的波動而變化的特性,這種升速方法的加速度是恒定的,其缺點是未充分考慮步進電機輸出力矩隨速度變化的特性,步進電機在高速時會發生失步。
ISD500-020
ISD500-120
PEE533-A
PEE535-A
PCE5431-AC
PCE5441-AC
PCE5451-AC
PCE5641-AC
PCE5661-AC
PCE5691-AC
GTS500-020
GTS500-120

具有良好制動效能穩定(制動因數與摩擦系數成線性關系)性、在各種路面上都有良好的制動表現、結構簡單維修方便等優點,在現代車輛和工程機械設備上得到了廣泛的應用。在乘用車上的大多都是接觸式摩擦制動器,它利用液體用力作為動力源,通過液力來推動摩擦片與制動盤相接觸,使汽車減速或者停車。
時滯問題摩擦制動器在開始制動時,存在時滯問題,即從司機踩下制動路板之后到汽車開始減速存在著一段時間。磨損問題汽車在高速的工況下進行制動,摩擦塊磨損加劇,而且由于溫度升高還出現制動效能降低的現象。摩擦熱摩擦制動器在工作中產生大量的摩擦熱 可以使制動器的工作表面產生局部高溫,表面氧化甚至熱疲勞磨損終使摩擦制動器失效 所以研究溫度對摩擦制動器性能的影響有重要意義。而摩擦制動器溫度是一個很復雜的問題 涉及的學科面很廣需要多學科綜合運用特別是計算機,數學,物理,化學及材料學等學科的靈活運用 。
MLN20-210-464A(B)
MLN20-210-466A(B)
MLN20-210-468A(B)
PF464-02A(B)
PF466-02A(B)
PF468-02A(B)
MLN50-110
MLN50-120
MLN50-110-5641AC(BC)
MLN50-110-5661AC(BC)
MLN50-110-5691AC(BC)
MLN50-110-5961AC(BC)
MLN50-110-5991AC(BC)
MLN50-110-59131AC(BC)
MLN50-120-5641AC(BC)
MLN50-120-5661AC(BC)

PF566-AC(BC)
PF569-AC(BC)
GTS500-120-5641AC(BC)
GTS500-120-5661AC(BC)
GTS500-120-5691AC(BC)
IMS50-110-5641AC(BC)
IMS50-110-5661AC(BC)
IMS50-110-5691AC(BC)
IMS50-110-5961AC(BC)
IMS50-110-5991AC(BC)
IMS50-110-59131AC(BC)
IMS50-210-5692AC(BC)

自適應控制是在 20 世紀 50 年代發展起來的自動控制領域的一個分支 。它是隨著控制對象的復雜化 ,當動態特性不可知或發生不可預測的變化時 ,為得到高性能的控制器而產生的 。其主要優點是容易實現和自適應速度快 ,能有效地克服電機模型參數的緩慢變化所引起的影響 ,是輸出信號跟蹤參考信號 。文獻研究者根據步進電機的線性或近似線性模型推導出了全局穩定的自適應控制算法 , 這些控制算法都嚴重依賴于電機模型參數 。文獻將閉環反饋控制與自適應控制結合來檢測轉子的位置和速度 , 通過反饋和自適應處理 ,按照優化的升降運行曲線 , 自動地發出驅動的脈沖串 ,提高了電機的拖動力矩特性 ,同時使電機獲得的位置控制和較高較平穩的轉速 。
IMS51-110-5961AC(BC)
IMS51-110-5991AC(BC)
IMS51-110-59131AC(BC)
IMS51-210-5692AC(BC)
IMS51-210-5962AC(BC)
IMS51-210-5992AC(BC)
IMS51-210-59132AC(BC)
IMS51-120-5641AC(BC)
IMS51-120-5661AC(BC)
IMS51-120-5691AC(BC)
IMS51-120-5961AC(BC)
IMS51-120-5991AC(BC)
IMS51-120-59131AC(BC)
IMS51-220-5692AC(BC)
IMS51-220-5962AC(BC)
IMS51-220-5992AC(BC)
矢量控制是現代電機高性能控制的理論基礎 ,可以改善電機的轉矩控制性能 。它通過磁場定向將定子電流分為勵磁分量和轉矩分量分別加以控制 ,從而獲得良好的解耦特性 ,因此 , 矢量控制既需要控制定子電流的幅值 ,又需要控制電流的相位 。由于步進電機不僅存在主電磁轉矩 , 還有由于雙凸結構產生的磁阻轉矩 , 且內部磁場結構復雜 , 非線性較一般電機嚴重得多 , 所以它的矢量控制也較為復雜 。
http://www.china-westdev.com